Beijing institute of technology

School of computer science

DATA MINING

RELATIONAL RETRIEVAL USING
RANDOM WALK WITH
RESTART(RWR)

MARWAN ANISS QUDAR 2820150124
ELFATIH ABDALLAH HASSAN 2820150087

JOHN BETER 2820150014

Relational Retrieval Using Random Walk With
Restart(RWR)

Introduction:

Accessing the scientific literature in the past researches has focused on a small
number of well-defined tasks which represent the scientific literature as a set of
documents such as named entity recognition(NER) and normalization . In fact,
scientific literature naturally includes substantial metadata such as author names,
citations, and publication venues, as well as derived metadata (such as gene and
protein names, in the biomedical literature).

An alternative way to represent the scientific literature is as a labeled directed
graph, with typed nodes representing documents, terms, and metadata, and
labeled edges Representing the relationships between them (e.g., “ authorOF”,
“datePublished”,etc).

Representing the scientific literature as a labeled directed graph is an effective
way , which the typed nodes are representing documents, terms, and metadata |,
and labeled edges representing the relationships between them (e.g. “ authorOF”,
“ datePublish”,etc). And by implementing the labeled graph we will be able to
analyze the entities in any specific dataset type and build the network between each
entity according to the connection between them .

By building the network , the general structure will be obvious and that leads to
retrieval the specific knowledge that tasks can be implemented on it to improve
and get different results from it by applying specific methods for reaching the
required results and achieving the main goal .

Dataset:

The data in our project, is a dataset which is in the format of “ .fly “ this dataset a
biological literature graph which is an integrated database for Drosophila and
Anopheles genomics, and contains about 127K papers tagged with genes and
proteins. In fact, scientific literature for example “.fly” naturally includes
substantial metadata such as author names, citations, and publication venues, as
well as derived metadata (such as gene and protein names, in the biomedical
literature). The way to represent the scientific literature is as a labeled directed
graph, with typed nodes representing documents, terms, and metadata, and labeled
edges representing the relationships between them (e.g., ‘“‘authorOf”,
“datePublished”, etc).

Cites PhysicallGenetic Interactions
First/Any 1,267,531 Menti 1.4M T -
entions ranscribes
Author - (" 3 Tgeok () 2ok
author |07/9,903 paper gene protein
233K 127K 516K 414K
2 1M
Before
Title Word Journal Year Downstream
102K 1.8K 58 {Uptream

Fig. 2. Schema of the fly data.

Structure of the Fly dataset :

Year (18791224, 2008)

Journal (18791224, Genetics)

Author (18731224, Vandre CL Ramakaka RT Rivier Dfl

AuthorF 18791224, Vandre CL|

AuthorL (18731224, Rivier D)

Title(18791224,dna end-binding protein ku regulates silencing internal fml hmr loci saccharomyces cerevisiae)

Pre-processing :

After opening the dataset and analyzing its components , we found different
relationships between the entities like a paper has a specific year and this paper has
been published by different author in a specific journal. So as we can see there are
different connections between each component in the dataset.

And then we came with a new task to implement in the dataset to get new results
that will help to understand new knowledge . If we come back to the structure of the
dataset we will find that the each author has co-author that they worked together to
publish different papers and each author has worked with different authors , so it is
kind of impossible to know who is working with other according to the massive
information that the dataset contains .

so what we have done is to specify each author and see who is working with that
author we specified them as Main Author and Co-Author . And by implementing
this task it will be easier to know what is the relationship with each author and who
Is working in each other in publishing the scientific papers.

1- Specifying the main authors :

In the beginning we tried to get the list of all authors in the dataset because it
was very hard to get them from the main structure , so we implemented this
code :

| sVs
data path = r'C:\Users‘\Maroc Qudar‘\Desktop'new ML‘alchemy‘\AbstractInfor.db'
author path = r'C:\Users\Maroc Qudar‘\Desktop\new ML\alchemy‘AuthorCopy.txt
key word = 'Ruthor
notkeyl = 'Liuthor
notkey2 = 'FRuthor
dataFP = open(data path, 'r')
authorFPF = open(author path, 'w'")

eachline dataFP:

#fprint eachlin
key word eachline notkey2 eachline notkeyl

authorFP.write (eachline)
dataFFP.clo=se ()
authorFP.close ()

And then we generating the list in a new file and here is a sample of the authors
that has been generated :

Author(18/91224,Vandre_CL Kamakaka_RT R1vier_DH)

Author (17434796, 5chuTz_TA Prinz_WwA)

Author (7958899,0zer_J Moore_PA Bolden_AH Lee_A Rosen_CA Lieberman_PM)

Author (11327883, Waterborg_JH)

Author (1918023, Woychik_NA Lane_WS Young_RA)

Author (12381738, Lechner_E Xie_D Grava_S Pigaglio_E Planchais_S Murray_JA
Parmentier_Y Mutterer_] Dubreucq_B Shen_WH Genschik_P)

Author (2167439 ,Buchman_C Skroch_P Dixon_W Tullius_TD Karin_M)

Author (14523396, Pintard_L Peter_M)

Author (7037542, Ter-Avanesian_MD Shubochkina_EA Inge-vechtomov_SG)

Author (15153069, Forsgren_M Attersand_A Lake_S Grunler_) Swiezewska_E Dallner_G
Climent_I)

Author (9719874, Scott_sV Klionsky_DJ)

Author (17411056, Pastore_A Martin_SR Politou_A Kondapalli_KC Stemmler_T Temussi_PA)

So in here for example Author (paper_id, name of the authorF and author L)
AuthorF : First Author .
AuthorL: Last Author.

Al -Aldroos_K
Holly_3JA
Datson_NA
van_Nuland_NA
Cloud_KG
Hawley_RS
Kwast_L
Haynes_SR
Egashira_N
Scrimale_T
Tadauchi_T
schofield_DaA
Takiguchi_s
Pan_sM

Chan_w
Kiyono_K
Krol_AA
Robert_F
Arenas_JE

The file generated more than 69000 authors in the dataset , so as you can see the big
number of the authors which is very hard to get the Author and the Co-author from
analyzing the dataset line by line instead of using a specific methods and techniques
to get that knowledge .

2- Making the main clusters :

So after we get the authors , we had to divide them into different clusters so is
going to be easier to work with this data. We have around 70000 authors which
we will need 100 cluster and each cluster will contain 700 authors

USEITlHES_dlCt = {}
for eachdata in follow data:
if eachdata.strip(''n') == "";

two_user = eachdata.strip(''\n') .splic("™ ")
all author.append(two_user[0])
all author.append(two_user[1l])
if UserTimes dict.has key(two_user[0]):
if UserTimes dict[two_user[0]].has key(two_user[l]):
UserTimes dict[two user[0]] [two_user[l]] = UserTimes dic

UserTimes dict[two _user[0]].setdefault (two_user([l],1)
UserTimes dict.setdefault (two_user[0], {two_user([1]:1})

for key in UserTimes dict.kevs():
F print 'key = %z' % key,UserTimes dict [key]

Here is a class number 0 as a sample :

wlas= O - MNotaepad

File Edit Forrmmat T T = Helpe

=] <37

Ml
:|ar|_~'|

P r— &
S =

|
DITVURETACZNOADN O AN
TILFONE| DJOORTOAC0D |
07 Jn| o
COW <0 F| H <<pn<TN0
Dyl 4 3
o At |

14
€1
0
uis
20
3
7

I
-
"
| 0] 473U

OF I CA 7

NI
NC
pp
i

— e T e =
i =" |

But the problem is that these classes has been chosen randomly and that is not
effective because we want to get the author and his co-authors by accurate results ,

so we have applied the K-means algorithm to build the clusters in a more accurate
way . We get each author from each class and then calculate its corporation times
between main author and co-author through matrix analysis for each generated class
and then we get the stable results after applying K-means for many iterations .

Here is the code to calculate the corporation times between main author and co-
author :

UserTimes_dict = {1
gachdata fullnw_data:
eachdata.acrip('\n') ="

tHO Uger = eachdata.strip("\n') . splic(" ")
all author.append(two uger(0]
all author.append(two user(l]
UserTimes dict.has key(two user[0]):
UserTimes dict[two user(0]].has key(two user([1]):
UserTimes dict[two user([0]][two user[l]] = UserTines dict[two user[0]][two user[l]] + 1

UserTimes dict[two user([0]].setdefault {two user[1],1)

UserTimes dict.setdefault (two user[0], {two user[1]:1})

Here is the code for applying K-means :

def cal5imi(node,class i):

gimi =

0

for eachnode in class i

giminode = 0
authorl = node
author? eachnode
if UserTimes dict.has key(authorl):
1T UserTimes dict[authorl].has key(authorl):
simingde = UserTimes dict[authorl] [author?]

siminode = 0
elif UserTimes dict.has key(authorl):
1f UserTimes dict[author?].has key(authorl):
gimingde = UserTimes dict[author?] [authorl]

giminode = 0
2imi = 2imi + ziminode
freturn simi
return flnatisimi]fflnatileniclass_i]]

N = 7
comant = 0
while couunt<KH:
changtimes = 0
Tor key in authorClass_ _dict.kewvs () :
Fprint key,authorClass dict [kew]
max=imi = 0O
ori class = authorClass dict[kew]
max class = ori_class
class liscl[ori_class] .-.remove (Kkew)
Tor i inm range (0,classHNum) :
simi = calSimi (key,class list[1])
1f simirFmaxsimi:
maxsimi = sSsimd
max class = i
1f max class !'= ori_class:
changtime=s = changtimes 4+ 1
authorClass dict[key] = max class

class_ list[max class] .append (key)
#forintc key,authorClass dict[kewy]

print changtimes
print "tcthe",count, "iteratcion domne! 11w
=0 = oconmnnt 4+ 1

MATL
changtimes = 5S50:

3- Applying Random Walk with Restart (RWR):

We have considered a random walk particle that starts from node i. The particle
iteratively transmits to its neighborhood with the probability that is proportional to
their edge weights. So we applied RWR in the clusters that have been generated to
get the top 3 corporation authors by using Markov Chain for the matrix

calculations in each cluster .

The relevance score defined by RWR has many good properties such as it can
capture the global structure of the graph , it can capture the multi-facet relationship

between two nodes.

randomWalk (matrix Normalized):
conTimes iter = matrix Normalized

1:
last iter = conTimes iter
conTimes iter = np.dot(conTimes iter,matrix Normalized)
(conTimes iter — last _iter).sum() < 1:

conTimes iter

randomWalkEReset (matrix Normalized, author i):
alpha = 0.25
M, = matrix Normalized.shape

author i »>= int(M):
0
matrix Reset = matrix Normalized=® (1l.0-alpha)
matrix Reset[:,author i] = matrix Reset[:,author i] + alpha
conTimes iter = matrix Reset
1:
last _iter = conTimes iter
conTimes iter = np.dot(conTimes iter,matrix Reset)
(conTimes iter — last _iter).sum() <« 1:

conTimes iter

getTop3 (authori listc):

v _Index = []

i range (len(authori list)):
v_Index.append|((authori lisc[i],i))
v_Index.sort (key= X:x[0],reverse=Irue)

Fv_Index[0] [1]

[v_Index[1][1],v Index[2][1],v_Index[3][1l],v_Index[4][1]]

The code below show the applying of RWR

- Experimental Results :

In our experimental the results is obtained by entering the name of the specific
author that has corporation times with co-authors and after entering the specific
name in the correct form the program will display the top co-authors in the clusters
according to the number of the co-authors that you want to get .

And here is the results of some queries :

Welcome to relational retrive system:

input y for continue
input n for quit

In [7]:

here: y

Prinz_WA

C:'Users'\Marc Qudar\Desktopinew ML\class‘class 91.txt
Silver PA

Kahana_JA

Grzyb_ L

Schlenstedt G

Enter an author's name: Prinz_WA

Do you want to continue: [y]/n?:

IPython console | Object inspector | Variable explorer File explorer

Zonsole

= | ~ python 1 Kernel 1 [£3

So as we can see here we started by entering “ y * to continue then we entered a
specific name for an author . Then as we can see the program has displayed the co-
authors .

